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Abstract
Mixed integer programming (MIP) models are used for long-term production scheduling of open pit mines.
However, formulations based on binary variables for mining blocks require too many variables and are often
difficult or impossible to solve. This paper presents and tests alternative MIP scheduling models that have
reduced the number of binary variables and solution times, thus increasing efficiency. The results serve as a
guide in selecting the approach that will provide the best solution for mining any given deposit. A case study
is presented to illustrate how, in the different formulations proposed, the time required for solving MIP models
is reduced. In addition, proposed formulations are found to decrease the gap of feasible solutions when exact
optimal solutions are difficult to obtain.

Introduction
A major element of mine planning is the optimization of long-
term production scheduling. The aim is to maximize the
overall discounted net revenue from a mine within operational
constraints such as mining slope, grade blending, ore produc-
tion and mining capacity. Mixed integer programming (MIP)
and linear programming (LP) type mathematical models are
considered to be powerful tools in optimizing mine schedul-
ing, and there have been major efforts in applying them to
mining projects.

Due to the difficulties inherent in solving MIP formula-
tions containing many binary variables with the computing
software and hardware available, Johnson (1968) developed
an LP model for optimizing mine planning. However, this
method generates partial, or fractional, mining of the blocks,
causing the schedule to be sub-optimal and even infeasible
when blocks are mined as a whole. Gershon (1983) discusses
an MIP approach for optimizing mine scheduling that allows
partial block mining on the condition that the preceding block
has been fully mined. Gershon states that the model doesn’t
overcome the issue of solving large integer programming
problems. Dagdelen (1985) applies the lagrangian method to
solve an MIP model’s formulations, but cannot ensure fea-
sible solutions for all cases. In searching for alternative
solutions, Dagdelen was unable to find computing capabili-
ties to directly solve the large MIP models. Akaike (1999)
developed a four-dimensional relaxation method to transform
the production scheduling mathematical model into a network
structure, enabling graph theory or network theory to be
applied to this transformation. To reduce the effect of the gap

problem, Akaike further transformed the network by consid-
ering the relaxed production capacity constraints.

These publications illustrate the importance of using MIP/
LP-based mathematical modeling in mine optimization, and
they note that the size of the required MIP model is a major
problem because of the necessity to incorporate too many
binary variables in the model. Ramazan (2001) proposes a
new method based on the fundamental tree concept to de-
crease the number of binary variables required in MIP formu-
lations for long-term production scheduling. Although the
proposed method decreases the number of binary variables
significantly, its implementation is complex. Therefore, it has
not yet been applied to production scheduling in the mining
industry.

This paper presents scheduling models and tests on how to
generate MIP formulations using fewer binary variables. It
also presents alternative approaches to MIP modeling for
efficiency in solving the formulations with different mine data
sets. The tests show that there are significant differences in the
time taken by the various MIP models generated for the same
deposit to maximize net present value (NPV). A gold mine
data set is used in the case studies.

MIP formulations for long-term open pit mine
production scheduling
In long-term production scheduling of open pit mines, MIP
models are usually constructed to maximize the overall net
present value (NPV) of the mining project. The general MIP
form of open pit production scheduling is presented as follows,
with some variations in the slope and reserve constraints.
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The objective function.
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where
p is the maximum number of scheduling periods;
n is the total number of blocks to be scheduled;
ci

t is the NPV to be generated by mining block i in period
t; and

xi
t is a binary variable, which is equal to 1 if the block i is

to be mined in period t and equal to 0 otherwise.

Grade blending constraints.
Upper bound constraints: The average grade of the mate-

rial sent to the mill has to be less than or equal to a certain grade
value, Gmax, for each period, t
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where
gi is the average grade of block i and
Oi is the ore tonnage in block i.

Lower bound constraints: The average grade of the mate-
rial sent to the mill has to be greater than or equal to a certain
value, Gmin, for each period, t
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Reserve constraints. A block cannot be mined more than
once. These constraints can be formulated in two ways.

The first way is by using inequalities to state that all the
blocks in the orebody model considered can be mined only
once
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The second way is by using equalities to state that all the
blocks in the model considered have to be mined once
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Generally, the orebody model contains many blocks, and it
is very difficult, or impossible, to get a solution through MIP
formulations if they are applied to the whole orebody model.
Thus, it is often necessary to consider applying the formula-
tions only to the blocks within the ultimate pit limits. If the pit
limits define an optimal outline, both of these reserve con-
straints can be considered equivalent in terms of the optimality
of the solution. However, there are differences in terms of the
processing (CPU) time required to solve the same model using
the equality and inequality type constraints, and these are
discussed in this paper.

Processing capacity constraints.
Upper bound: The total tonnage of ore processed cannot be

more than the processing capacity (PCmax) in any period, t
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Lower bound: The total tonnage of ore processed cannot be
less than a certain amount (PCmin) in any period, t
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Mining capacity. The total amount of material (waste and
ore) to be mined cannot be more than the total available
equipment capacity (MCmax) for each period, t
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where
Wi is the tonnage of waste material in Block i.

To force the MIP model to produce balanced waste produc-
tion throughout the periods, a lower bound (MCmin) may need
to be implemented as follows
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Slope constraints. All the overlying blocks that must be
mined before mining a given block have to be determined.
This can be implemented through one or more cone templates
representing the required wall slopes of the open pit mine.
There are two ways of implementing these constraints.

The first method is to use one constraint for each block per
period
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where
k is the index of a block considered for excavation in

Period t,
m is the total number of blocks overlying Block k and
l is the counter for the m- overlying blocks.

These types of slope constraints will be referred to as “fewer”
constraints in this paper.

The second method is to use m- constraints for each block
per period
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These types of slope constraints are referred to as “many”
constraints in this paper.

MIP implementation with fewer binary variables
The number of binary variables required for the MIP model is
equal to the number of blocks in the model multiplied by the
total periods to be scheduled, as can be seen in the formula-
tions above. For example, assume that an ultimate pit, or a
pushback, containing 1,000 positive value blocks and 4,000
negative value blocks needs to be scheduled for three periods
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using an MIP model. To simplify the discussions, positive
value blocks are referred to as “ore” and negative value blocks
as “waste.” Zero value blocks are considered as “air” and
ignored. The traditional formulations presented suggest that
the required number of binary variables for this model is
15,000.

To reduce the binary variables, the variables representing
only ore blocks are defined as binary, and the remaining
variables as linear. The linear variables are used to represent
the percentage of the blocks to be mined in each period. The
terms “partial” or “fractional” block mining are used to
describe the situation where some part of a block is scheduled
to be mined in one period and the rest of the block in different
periods. Partial block mining is a problem if one or more of the
model constraints is violated when the blocks are fully mined
in one period, or if the amount of partially mined blocks is
high, causing a significant violation of the optimality in a
project’s output.

It is interesting to analyze why solving an MIP model that
has only ore blocks defined as binary can result in some of the
blocks being partially mined.

One of the main reasons is that mining a block in one period
is exactly the same as mining that block in any other period for
the MIP’s objective function. This first condition does not
exist when the objective is maximizing total NPV of the
project, or minimizing deviations between planned targets
and actual production with different cost coefficients for
different time periods. This means that mining a block in any
one period is better than mining it in another period for the
optimality of the objective function. Assuming the objective
is maximizing the total NPV of a mine project, the MIP model
will attempt to mine the blocks with positive economic values
and will mine the negative value blocks only when they have
to be mined due to the slope constraints. The optimality of the
MIP model would result in mining the waste blocks as late as
possible. Due to slope constraints and especially the time
value of money, it is less costly to mine a waste block fully in
the latest possible period than to mine part of it in the earlier
period and part of it later for the objective function. For the
optimality of the MIP model, many waste blocks will have to
be fully mined. This condition is considered to be “strong” in
the sense that it has strong impact in generating binary type
solutions (0 – 1) for the linear variables.

The second reason for partial mining of the blocks is that
many blocks have exactly the same economic value, making
the model indifferent between mining one of the blocks fully
and mining half from two different blocks, or mining many
blocks partially adding up to the volume of one full block. This
argument is acceptable on condition that there is excess
mining capacity in an early period, which can be used to strip
some waste blocks to enable mining of some ore blocks in
future periods that could not otherwise be mined.

This second condition is considered to be “weak” in the
sense that a mathematical model of a mine deposit having
many waste blocks with the same economic values may still
result in a binary solution or in an insignificant amount of
fractional mining of waste blocks, due to the existence of
slope constraints and the dominant effect of the objective
function in the model, assuming that the mining capacity
constraints are not very tight. If the solution of an MIP model
produces partial block mining of less than an acceptable
amount, which may be 5% to 10% of the waste blocks, the
results can be considered satisfactory due to the fact that waste
blocks do not affect the processing capacity, ore grade and
quality parameters. If the results contain a high amount of

fractional mining of blocks and are considered unacceptable
in terms of optimality of the process, some modifications can
be made to the values used in the objective function to
decrease the fractional mining of waste blocks. If the objec-
tive function is NPV maximization, the economic value of the
blocks can be changed by a small quantity, ε. For example, if
three of the blocks have the same economic value of -10 and
ε is equal to 0.001, the block values can be reset as -10.000,
-9.999 and -9.998. This modification makes the block values
different only for the mathematical model, but they would
remain the same for the economic considerations of the mine.
This minor modification of the values may significantly
decrease, or sometimes avoid, the fractional mining of blocks
that occurs due to blocks having the same values.

The number of binary variables required to formulate an
MIP model for the given example is reduced from 15,000 to
3,000 (3*1,000) by defining only the variables of ore blocks
as binary. It can also be argued that binary variables used in
setting the last period’s, or year’s, variables can be defined as
linear instead of binary. This setting did not reduce the
solution time during the experiments because, if it is decided
to mine a block in a given period, the variables representing all
the other periods are set to zero due to equality-type reserve
constraints, whether the last period is binary or not. Thus, the
number of binary variables required to formulate the MIP
model would only be 2,000 instead of 15,000 in the traditional
approach.

In solving MIP models, the term “gap” refers to the percent
difference between the best linear bound of the objective at the
current stage and the current feasible binary value of the
objective function (CPLEX, 1998). A gap greater than zero in
a feasible binary solution of an MIP model means that the
maximum possible improvement in the objective function
cannot be greater than the gap. However, the objective func-
tion may or may not improve, depending on the model. In this
paper, the gap is considered as an indication of the quality of
a feasible solution of the MIP model.

It can be argued that it is sufficient for the mathematical
model to only consider the variables of the last period in the
reserve constraints if an MIP model is constructed for the
blocks within an optimal pit limits. That is, the variables of the
last period do not need to be considered in the objective
function and the constraints related to slope, processing ca-
pacity, grade blending, mining and others. If the output of the
mathematical formulation is feasible and optimal for all the
periods except the last period, the blocks remaining to be
mined during the last period will not change the optimality of
the objective function and the slope constraints.

However, this implementation may increase the computa-
tion time required to solve the problem in some cases, because
the required search area for the optimality may increase
significantly, and the change in the shape of the objective
function may also have negative effects. This is shown in the
case study discussed below. Looking at Case 3 in Table 2,
which has 0.43% gap after about 16.5 minutes of computer
run, when the variables of the last period are excluded only
from the objective function, it took 1.84 times longer to reach
16.7% gap and 22.5 hours to reach 12.5% gap using the same
computer and software.

To determine the scheduling periods of the blocks that are
scheduled for more than one period, the mathematical formu-
lations are regenerated. In the reformulated model, the block
variables that resulted in binary values in the first solution are
fixed to that output value. The other block variables that
resulted as partial block mining, and also the negative value
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blocks that are not mined in the first two periods, are defined
as binary variables. The second formulation is generally
solved in almost no time because most of the blocks can only
be assigned to one period to satisfy the model constraints. This
strategy guarantees the feasibility of the output if a feasible
solution exists, and it minimizes the negative impact of the
partially mined blocks on the optimality of the objective.

Case study: Implementations of the MIP model
Data from a gold deposit are used to provide formulations and
enable comparisons between different approaches in generat-
ing the MIP model to maximize NPV of the project. Table 1
provides information about the orebody model within the
ultimate pit limits used in the case study. Grade distribution of
gold is illustrated on a cross-sectional view in Fig. 1. The figure
shows that part of the mine has already been mined out,
exposing some of the high-grade ore material. The average
grade of the ore material is around 1.6 g/t at a 1.0 g/t break-even
cutoff grade, which is around 3 Mt. Total material within the
final pit limits is approximately 5.7 Mt, as shown in Table 1.

This data set was chosen for testing all the different
approaches used in formulating an MIP model. Most impor-

tantly, the different MIP formulations could be compared on
the computation time required to solve each set of formula-
tions and also on the gap and the number of partially mined
blocks. Although the resultant NPVs from any feasible solu-
tion are very close to each other, due to the exposed high-grade
ore, and they do not reflect a general realistic comparison in
this specific case study, the gap and the number of partially
mined blocks are good measures in general for the quality of
the output.

The MIP production scheduling formulations are con-
structed assuming three years of mine life and with binding
lower and upper constraints on the processing plant of 900,000
and 1,100,000 t/a, respectively. The long-term production
scheduling process is formulated using different approaches,
forming different cases as presented in Table 2. In all the
cases, the MIP model contains 3,180 variables in total.

The columns in Table 2 from left to right show the case
number, the number of binary variables, the total constraints,
the type of reserve and slope constraints, the computation
(CPU) time to solve the model, the gap, the number of partial
blocks and the total NPV generated by the model. The case
number x-2 refers to the reformulated model of Case x (x=1,
7, 8′ or 9′) to convert linear variables into binary. The x′
indicates that the variables representing the last period are
only included in the reserve constraints for Case x, which
means they are excluded from the objective function, mining
capacity and the slope constraints. In the primary formula-
tions, different numbers of binary variables refer to the differ-
ent approaches used: 1,040 means the variables of positive
value blocks for the first and second periods are defined as
binary, 1,560 means the variables of positive value blocks for
all the three periods are defined as binary, 2,120 means the
variables of all the blocks for the first and second periods are
defined as binary and 3,180 means all the variables are defined
as binary.

In all cases, the CPLEX 6.6 program is used to solve all the
MIP formulations. In solving an MIP model, if the program is
not improving the solution, or is closing the gap very slowly,
the program is stopped after the gap drops down to 10%.
However, when the solution is too slow in improving the gap,
it is stopped at the existing feasible solution status after ten

hours of run, as reported in Case 10. If the
program appears to be improving the gap
quickly, it is stopped as soon as the gap
drops below 5%. In the cases shown in
Table 2, the performance is extremely
slow after the reported gaps. For example,
in Case 5 a solution with 0.26% gap is
reached after around 172 minutes, but it
took almost 27.3 hours to reach the opti-
mal results reported in the summary of
output in Table 3. The cases that took
more than one hour to solve with small
gaps generated the first feasible solution
with less than 10% gap. The improve-
ments in the cases that took more than one
hour are pursued only if the feasible cur-
rent solution had more than 10% gap. A
computer with a P4 Intel processor is used
in all the cases.

Comparison and analysis
In Case 1, fewer slope constraints are
applied, and only the variables of positive
value blocks for the first two periods are

1 1,040 3,742 = fewer 00:02:35 1.24 19 –

1-2 408 846 = fewer 00:00:00 0.0 0 18.28

2 1,040 23,755 = many 01:07:39 0.15 0 18.29

3 3,180 3742 = fewer 00:16:28 0.43 0 18.26

4 2,120 3742 = fewer (Same as Case 3)

5 3,180 23,755 = many 02:52:10 0.26 0 18.29

6 1,560 3,742 = fewer (Same as Case 1)

7 1,040 3,742 ≤ fewer 00:15:47 9.73 217 –

7-2 1,082 2,098 = fewer 00:02:30 0.0 – 18.04

8′ 1,040 2,852 ≤ fewer 02:37:18 10.00 50 –

8′-2 578 1,188 = fewer 00:00:00 0.0 – 18.22

9′ 1,040 16,194 ≤ many 00:14:07 4.56 121 –

9′-2 610 1,267 = fewer 00:00:00 0.0 – 18.22

10 3,180 3,742 ≤ fewer 16:03:44 30.14 – 17.96

11 3,180 23,755 ≤ many 02:35:45 15.36 – 18.14

Binary Total Reserve Slope CPU time Gap, Partial Obj.,
Case variables const. const. const. (h:m:s) % blocks $106

Table 2 — Different MIP formulations for optimization of long-term production
scheduling. (See the text for explanation of the columns and symbols.)

Total tonnage (t) 5,710,837

Ore Tonnage (t) 3,029,156

Waste tonnage (t) 2,681,681

Average grade (g/t) 1.623

Slope in all the direction 54°

Block dimensions (m) 20 x 20 x 6

Total number of blocks 1,060

Number of ore blocks 567

Number of (+) value blocks 520

Number of waste blocks 493

Number of (-) value blocks 540

Total undiscounted value ($) 20,294,023

Table 1 — Gold deposit characteristics within the ultimate
pit.

Characeristic Value
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assigned as binary and the others as linear. The problem is
solved in around 2.5 minutes with 1.24% gap. The solution
contained 19 partially mined negative value blocks. The
existence of partial block mining in this case shows that the
objective function could be improved a little more if the
solution could reach optimality.

Case 1-2 is generated by setting the binary variables in
Case 1 to their solutions and setting partially mined blocks and
also the negative value blocks that are not mined in the first
two periods as binary. Case 1-2 is solved by CPLEX instantly
because many of the variables can only be assigned in one
period due to slope constraints. The gap and the number of
partially mined blocks are so small that the results are very
close to the optimum.

Case 2 is generated by using many slope constraints instead
of fewer as in Case 1. In this case, the problem took more than
67 minutes to produce a solution with 0.15% gap and without
any partial block mining. A similar situation appears in
comparing Case 5 with Case 3, where a solution could be
generated in Case 3 with fewer slope constraints about 10.4
times faster than that in Case 5 with many slope constraints.
Although it was very efficient to use fewer constraints instead
of many in these cases, this is not generally the rule in MIP
formulations. For example, it takes more than 16 hours to
generate a solution with around 30% gap using fewer slope
constraints in Case 10, compared with a little more than 2.5
hours to get a solution with 15.4% gap using many constraints
in Case 11. For the MIP models that are difficult to solve, or
had to be run for ten hours or more, it may be better to use many
slope constraints. Although this will increase the size of the
model formulations, in some cases it may significantly de-
crease the solution time by decreasing the amount of node
visiting required by the CPLEX software. Also, the many
slope constraints used in Case 2 did not produce any partial
block mining, which may be due to the gap being much
smaller than the gap in Case 1.

Case 3 is generated by setting all the variables as binary in
the MIP model. It took almost 6.4 times longer to generate a
solution with 0.43% gap for Case 3 compared to Case 1. Both
results are not significantly different in terms of the optimality
of the output (the gap), indicating that using fewer binary
variables in optimization of larger mine deposits may improve
the efficiency of the solution significantly.

Case 4 is generated by setting the variables representing the
last period as linear instead of binary as in Case 3. Changing
the variables of the last period to linear did not improve the
solution time due to the existence of reserve constraints. This
means that if a solution is found for the variables of the first
or second period, the variables of all other periods are directly
calculated from the reserve constraints.

In a similar way, Case 6 produced the same results as Case
1. Case 6 is generated by defining the linear variables of
positive value blocks in the last period of Case 1 as binary as
well as the binary variables for the first and the second periods.

Case 7 is generated from Case 1 by changing the reserve
constraints from equality to inequality. The program took
almost six times longer than for Case 1 to find a feasible
solution, which had around 9.7% gap and 217 blocks partially
mined. Because inequality reserve constraints are used, the
MIP model resulted in even some of the positive value blocks
which are not assigned to any of the first two periods being
partially mined in the last period. This case and other trials
show that using equality rather than inequality reserve con-
straints usually brings two advantages: the program generally
takes less computation time to solve the models and the
models usually result in less partial block mining. In this case,
the output is considered to be very poor because too many
blocks are partially mined, affecting the optimality of the
schedule.

Case 8′ is generated from Case 7 by excluding the variables
assigned for the last period from the objective function and
slope constraints. The computation time to obtain a feasible
solution with 10% gap is almost 10 times more than for Case
7. Excluding some of the constraints from the model may have
increased the search area causing an increase in the solution
time. However, only 50 blocks are partially mined, which is
much better than the 217 produced by Case 7 for a production
schedule with around 10% gap. Even though there is not a
significant difference between Cases 7 and 8 in terms of the
gap, the quality of an output from an MIP model similar to that
of Case 8 may be considered acceptable for some cases,
whereas Case 7 is totally unacceptable because it has too many
partially mined blocks. This shows that even a small modifi-
cation in an MIP model may result in significant benefits.

Case 9′ is also generated by excluding the variables of the
last period from the objective function and slope constraints
and by using many slope constraints instead of fewer con-
straints as in Case 7. The program took a little more than 14
minutes, which is close to the 16 minutes of computation time
in Case 7, to reach approximately 4.6% gap. However, the 121
partially mined blocks make the results of this case unaccept-
able too.

The experiments have shown that setting the variables of
positive value blocks as binary and the other variables as
linear may decrease the solution time significantly. Con-
structing the reserve constraints as equalities instead of in-
equalities may decrease the solution time and also play a
significant role in minimizing partial mining of waste blocks.
If the model is difficult to solve, as in Case 10, it may be better
to use many slope constraints instead of fewer, as in Case 11.

Figure 1 — Grade distribution of gold on a south-north
cross-section of the orebody model.

Figure 2 — South-north cross-sectional view for the
optimal schedule showing the three scheduled periods of
blocks
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As well as helping to decrease the solution time, this may also
help to decrease the partial mining of the waste blocks in some
cases by generating smaller gaps. In cases where the grade
blending constraints are very tight, it is suggested that all the
ore blocks be defined as binary variables instead of only
positive value blocks, because negative value blocks affecting
the grade constraints are likely to result in partial mining.

If there are periods involving only waste stripping without
producing ore in a mining operation, or if mining of waste
blocks is not directly tied to the blocks with binary variables
(in cases such as lateralite-type two-dimensional deposits), it
may be necessary to implement the second condition, which
involves changing the economic values of the waste blocks by
a small amount when two or more blocks have the same value,
to minimize the partial mining of waste blocks.

Table 3 shows that the ore tonnage produced as the optimal
schedule during the first two years is very close to the
maximum processing capacity of the processor. The total
NPV value that can be generated from the schedule is about
$18.3 million, which is close to the NPVs generated by sub-
optimal schedules. One of the main reasons for this is the
exposing of high-grade ore that can be mined out without
requiring a lot of waste stripping in this case study. Another
reason is the small size of the deposit that can be mined within
three years without making a big difference to the discounted
economic value at 8% discount rate. The scheduling pattern in
Fig. 2 shows that the exposed ore is mined within the first
period, and the low-grade part of the deposit is mined in the
last period.

Conclusions
Several approaches were presented for formulating an MIP
model to serve as a guide for efficient optimization of long-
term production scheduling in an open pit mine.

It was shown that the solution time of an MIP model can
be significantly decreased by setting certain variables as
binary — either only the variables of positive value blocks, or
of ore blocks if the grade and/or ore production constraints are
tight — and setting the other variables as linear. In most cases,
the amount of partial mining of the negative value, or waste,

1 1,099 583 1,682 2.002 14,643 13,558

2 1,099 1,359 2,458 1.447 4,248 3,642

3 831 739 1,570 1.355 1,402 1,113

Sum/Av 3,029 2,681 5,710 1.623 20,293 18,313

Ore, Waste, Total, Grade, Value, NPV,
Periods 103 t 103 t 103 t g/t 103 $ 103 $

Table 3 — Optimal scheduling output from MIP model for the gold data. The last
row shows the sums for tons and economic values and average for the grade.
NPV is calculated at 8% discount rate.

blocks will be insignificant due to the
slope constraints and the use of differen-
tiated coefficients in the objective func-
tion between different periods.

Partial block mining can be prevented
or minimized by changing the values used
in the objective function by a small amount
for the blocks that have the same value.
This can be used if there are periods
involving only waste stripping without
producing ore in a mining operation, or if
the total mining capacity is tight, or if

mining of waste blocks is not directly tied to the blocks with
binary variables (for example lateralite-type two-dimensional
deposits).

It was shown that by constructing the reserve constraints as
equalities instead of inequalities, the solution time can be
decreased and the partial mining of waste blocks minimized.
And it was shown that it may be better to use many slope
constraints rather than fewer if it is difficult to solve the model
because of its large size.

It should be noted that solution time in MIP models
depends not only on size (number of binary variables and
constraints), but also on “tightness” of the model, i.e., the data
set used, the constraints and the objective function. The data
used determine the shape of the objective function (coeffi-
cients in the objective function), coefficients and bounds of
the constraints that have significant impact on the solution
time of an MIP model. In the case studies performed, the gap
in the first feasible solution was crucial in general: a small gap
(less than 10%) resulted in a good solution, but a large gap
(greater than 10%) could not be closed down quickly to an
acceptable level. Occasionally, small changes in a mathemati-
cal model, such as the exclusion of the last period variables
from one or some of the constraints and/or objective function,
may result in drastic changes in the solution time and the gap
on a feasible solution.
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